

Use the 4 equations (models) above to answer the following questions. (Note: Remember to use negative signs, where appropriate.)

For most problems, there is more than one way to solve for the desired variable. It's okay if you chose a different model than I did, as long as you got the same result.

1. A bicyclist is going $6.2 \mathrm{~m} / \mathrm{s}$ eastward. He accelerates eastward at a constant $0.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 5.0 seconds. Find the cyclist's (a) final velocity and (b) displacement.
$\mathbf{v}_{\mathbf{i}}=6.2 \mathbf{i}(\mathrm{~m} / \mathrm{s}), \mathbf{a}=0.8 \mathbf{i}(\mathrm{~m} / \mathrm{s} / \mathrm{s}), \mathrm{t}=5.0(\mathrm{~s})$
(a) $\mathbf{v}_{\mathrm{f}}=$? , let's use $\mathbf{v}_{\mathrm{f}}=$ at $+\mathbf{v}_{\mathbf{i}}$
$\mathbf{v}_{\mathrm{f}}=(0.8 \mathbf{i})(5.0)+(6.2 \mathbf{i})=10.2 \mathbf{i}(\mathrm{~m} / \mathrm{s})$
(b) $\Delta x=$?, let's use $\Delta x=v_{i} t+1 / 2$ at 2
$\Delta x=(6.2 \mathrm{i})(5.0)+1 / 2(0.8 \mathrm{i})\left(5.0^{2}\right)=41.0 \mathrm{i}(\mathrm{m})$
2. A car is driving northward at $14.1 \mathrm{~m} / \mathrm{s}$ and accelerates at a constant rate to $25.0 \mathrm{~m} / \mathrm{s}$ northward. If the car's displacement during this acceleration is 70.4 meters northward, (a) how long was the car accelerating and (b) what was its rate of acceleration?
$\mathbf{v}_{\mathrm{i}}=14.1 \mathrm{j}(\mathrm{m} / \mathrm{s}), \mathbf{v}_{\mathrm{f}}=25.0 \mathrm{j}(\mathrm{m} / \mathrm{s}), \Delta \mathbf{x}=70.4 \mathrm{j}(\mathrm{m})$
(a) $t=$?, let's use $\Delta x=v_{\text {avg }} t=\frac{v_{i}+v_{f}}{2} t$
$\mathrm{t}=2 \Delta \mathrm{x} /\left(\mathbf{v}_{\mathbf{i}}+\mathbf{v}_{\mathrm{f}}\right)=2(70.4 \mathrm{j}) /(14.1 \mathbf{j}+25.0 \mathrm{j})=3.60(\mathrm{~s})$
(b) $a=$?, let's use $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$a=\left(v_{f}{ }^{2}-v_{i}{ }^{2}\right) / 2 \Delta x=\left((25.0 j)^{2}-(14.1 j)^{2}\right) / 2(70.4 j)=3.03 j(m / s / s)$
3. A car, starting from rest, accelerates westward at $1.35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3.0 seconds. What is its displacement during this time?

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{i}}=0(\mathrm{~m} / \mathrm{s}), \mathbf{a}=-1.35 \mathbf{i}(\mathrm{~m} / \mathrm{s} / \mathrm{s}), \mathrm{t}=3.0(\mathrm{~s}) \\
& \Delta \mathbf{x}=\text { ? , let's use } \Delta \mathbf{x}=\mathbf{v}_{\mathbf{i}} \mathbf{t}+1 / 2 \mathrm{at}^{2} \\
& \Delta \mathbf{x}=(0)(3.0)+1 / 2(-1.35 \mathrm{i})\left(3.0^{2}\right)=-6.075 \mathbf{i}(\mathrm{~m})
\end{aligned}
$$

4. An airplane is heading northward at $260 \mathrm{~m} / \mathrm{s}$. To slow down, it accelerates southward at 40.0 $\mathrm{m} / \mathrm{s} / \mathrm{s}$. (a) How much is its velocity reduced over a displacement of 200 meters northward? (b) How long does it take to slow to $180 \mathrm{~m} / \mathrm{s}$ northward?
$v_{i}=260 j(\mathrm{~m} / \mathrm{s}), a=-40.0 \mathrm{j}(\mathrm{m} / \mathrm{s} / \mathrm{s})$
(a) $\Delta x=200 j(m), v_{f}=$? , let's use $\mathbf{v}_{\mathrm{f}}{ }^{2}=\mathbf{v}_{\mathbf{i}}{ }^{2}+\mathbf{2 a \Delta x}$
$\mathbf{v}_{\mathrm{f}}=\sqrt{(200 \mathrm{j})^{2}+2(-40.0 \mathrm{j})(200 \mathrm{j})}=227.2 \mathrm{j}(\mathrm{m} / \mathrm{s})$, so the velocity is reduced $32.8 \mathrm{j}(\mathrm{m} / \mathrm{s})$
(b) $\mathbf{v}_{\mathrm{f}}=180 \mathrm{j}(\mathrm{m} / \mathrm{s}), \mathrm{t}=$? , let's use $\mathbf{v}_{\mathrm{f}}=$ at $+\mathbf{v}_{\mathrm{i}}$
$\mathrm{t}=\left(\mathbf{v}_{\mathrm{f}}-\mathbf{v}_{\mathrm{i}}\right) / \mathbf{a}=(180 \mathbf{j}-260 \mathrm{j}) /-40.0 \mathbf{j}=2.0(\mathrm{~s})$
5. A car begins from rest and accelerates southward at a constant rate for 4.8 seconds. Over this period of time, its average velocity is $12 \mathrm{~m} / \mathrm{s}$ southward. What is the car's rate of acceleration?

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{i}}=0(\mathrm{~m} / \mathrm{s}), \mathrm{t}=4.8(\mathrm{~s}), \mathbf{v}_{\text {avg }}=12 \mathrm{j}(\mathrm{~m} / \mathrm{s}) \\
& \mathbf{a}=?, \text { let's use } \Delta \mathbf{x}=\mathbf{v}_{\text {avg }} \mathbf{t} \text { and } \Delta \mathbf{x}=\mathbf{v}_{\mathbf{i}} \mathbf{t}+1 / 2 \mathrm{at}^{2} \\
& \Delta \mathbf{x}=(12 \mathrm{j}) 4.8=57.6 \mathrm{j}(\mathrm{~m}) \\
& \text { also, } \Delta \mathbf{x}=\mathbf{v}_{\mathbf{i}} \mathbf{t}+1 / 2 \mathrm{at}^{2} \text { which leads to } 57.6 \mathbf{j}=1 / 2 \mathbf{a}\left(4.8^{2}\right) \text { and } \mathbf{a}=5.0 \mathrm{j}(\mathrm{~m} / \mathrm{s} / \mathrm{s})
\end{aligned}
$$

6. A snowmobile is heading toward a tree at some particular speed. The operator releases the throttle and the machine begins to slow at the rate of $4.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the snowmobile comes to rest in 35 m , several meters in front of the tree, what was its initial speed?
$\mathbf{a}=-4.0 \mathbf{i}(\mathrm{~m} / \mathrm{s} / \mathrm{s})$, the direction is assumed, $\Delta \mathbf{x}=35 \mathbf{i}(\mathrm{~m}), \mathbf{v}_{\mathrm{f}}=0(\mathrm{~m} / \mathrm{s})$
$v_{i}=$?, let's use $v_{f}{ }^{2}=v_{i}{ }^{2}+2 a \Delta x$
$\mathbf{v}_{\mathbf{i}}=\sqrt{\mathbf{v}_{\mathbf{f}}^{2}-\mathbf{2 a \Delta x}}=\sqrt{(0)^{2}-2(-4.0 \mathbf{i})(35 \mathbf{i})}=16.7 \mathbf{i}(\mathrm{~m} / \mathrm{s})$; the speed is just $16.7 \mathrm{~m} / \mathrm{s}$ (no direction)
7. Two cars are 400.0 meters apart and are facing one another. Imagine they're on a single-lane road. Beginning simultaneously, the red one travels forward at a constant speed of $18 \mathrm{~m} / \mathrm{s}$, and the blue one travels forward at a constant speed of $26 \mathrm{~m} / \mathrm{s}$. After 3.5 seconds, what is the distance between the cars?

We'll model the cars separately, and then use both models to answer the question.
For the red car, $\mathbf{v}_{\text {avg }}=18 \mathbf{i}(\mathrm{~m} / \mathrm{s})$, where the direction is assumed, $\mathrm{t}=3.5$ (s)
$\Delta \mathbf{x}=$? , let's use $\Delta \mathbf{x}=\mathbf{v a v g}^{\mathrm{t}}, \Delta \mathbf{x}=(18 \mathrm{i})(3.5)=63 \mathbf{i}(\mathrm{~m})$

For the blue car, $\mathbf{v}_{\mathrm{avg}}=-26 \mathbf{i}(\mathrm{~m} / \mathrm{s})$, where the direction is opposite the red car, $\mathrm{t}=3.5(\mathrm{~s})$ $\Delta x=$? , let's use $\Delta x=v_{\text {avg }} t, \Delta x=(-26 i)(3.5)=-91 i(m)$

The cars cover a combined $(63+91) 154$ m during the period. In other words, they are now 154 m closer to one another, which means they are 400.0-154 = 246 m apart.
8. An airplane increases its velocity from $20 \mathrm{~m} / \mathrm{s}$ to $35 \mathrm{~m} / \mathrm{s}$ westward while undergoing a displacement of 515 meters westward. What is the airplane's acceleration during this period?
$\mathbf{v}_{\mathbf{i}}=-20 \mathbf{i}(\mathrm{~m} / \mathrm{s}), \mathbf{v}_{\mathrm{f}}=-35 \mathbf{i}(\mathrm{~m} / \mathrm{s}), \Delta \mathbf{x}=-515 \mathbf{i}(\mathrm{~m})$
$a=$? , let's use $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$a=\left(v_{f}^{2}-v_{i}^{2}\right) / 2 \Delta x=\frac{(-35 i)^{2}-(-20 i)^{2}}{2(-515 i)}=-0.801 i(\mathrm{~m} / \mathrm{s} / \mathrm{s})$
9. A bus is traveling eastward at $8.20 \mathrm{~m} / \mathrm{s}$ when it begins to accelerate at $0.55 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ eastward. How long does it take for the bus to travel 61.4 meters eastward?
$\mathbf{v}_{\mathbf{i}}=8.20 \mathbf{i}(\mathrm{~m} / \mathrm{s}), \mathrm{a}=0.55 \mathbf{i}(\mathrm{~m} / \mathrm{s} / \mathrm{s}), \Delta \mathbf{x}=61.4 \mathbf{i}(\mathrm{~m})$
$t=$? , let's use $\Delta x=v_{i} t+1 / 2 a t^{2}$
$61.4 \mathbf{i}=(8.20 \mathbf{i}) t+1 / 2(0.55 \mathbf{i}) \mathrm{t}^{2}$, which must be solved using the quadratic formula:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { To do this, we rearrange the equation to match the format } \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathbf{0} \text {. }
\end{aligned}
$$

I'm going to drop the i's to make it less messy (but I wouldn't drop negative signs if we had them). $0.275 t^{2}+8.20 t-61.4=0 \quad$... which means 0.275 is our a term, 8.20 our b term, and -61.4 is c
$t=\frac{-8.20 \pm \sqrt{8.0^{2}-4(0.275)(-61.4)}}{2(0.275)}=\frac{-8.20 \pm 11.61}{0.55}=6.2$ and $-36.0(\mathrm{~s})$
Now, in a math course you would state both solutions of this equation. Not so in physics. Only one of these solutions has any physical significance. A negative time is not meaningful, so we ignore it. The negative time does not belong in our model. So the answer to the original question is 6.2 seconds.
10. A bus is traveling eastward at $8.20 \mathrm{~m} / \mathrm{s}$ when it begins to accelerate at $0.55 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ westward. What is its velocity upon covering an additional 30 m eastward?
$\mathbf{v}_{\mathbf{i}}=8.20 \mathbf{i}(\mathrm{~m} / \mathrm{s}), \mathbf{a}=-0.55 \mathbf{i}(\mathrm{~m} / \mathrm{s} / \mathrm{s}), \Delta \mathbf{x}=30 \mathbf{i}(\mathrm{~m})$
$v_{f}=$? , let's use $v_{f}{ }^{2}=v_{i}{ }^{2}+2 a \Delta x$
$\mathbf{v}_{\mathbf{f}}=\sqrt{(8.20 \mathrm{i})^{2}+2(-0.55 \mathrm{i})(30 \mathrm{i})}=5.85 \mathbf{i}(\mathrm{~m} / \mathrm{s})$

